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Abstract--A thermal contact resistance model is derived from the Whitehouse, Archard and Onions theory 
of contact and thermal considerations. The model used two coupled thermal resistances acting in parallel : 
direct contact resistance (depending on the actual dimensions of the contact spots) and interstitial contact 
resistance (depending on interstitial medium and mean interfacial gap). Variations of thermal contact 
resistance are computed as a function of the apparent pressure. The predictions are compared and agree 
relatively well with some experimental data. The model using non-dimensional parameters is very easy to 

implement. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION THE THERMAL CONTACT PROBLEM 

Over the preceding decades, a very large number  of 
theoretical or experimental investigations have been 
performed to improve our knowledge of thermal con- 
tact resistance (TCP).  The TCR arises in the region 
of contact, when two solids are pressed together, 
because the real contact area Ac is only a small fraction 
of the nominal  or apparent area An. 

There have been several comprehensive reviews 
which provide a large panorama of the state of the art 
in T C R  modeling and experiment [1-4]. Despite many 
pertinent researches no fully satisfactory method yet 
exists for predicting with accuracy, and even for nom- 
inally flat engineerirLg surfaces, the TCR dependance 
on surface topography and applied load. 

Recently, MacWaid and Marschall [5] adapted a 
modified version of the Greenwood and Williamson 
(GW) elastic contact model to predict the contact 
conductance for several pairs of metal surfaces in vac- 
uum environment.  Similarly, an elastic contact model 
issued from the Whitehouse, Archard and Onions '  
(WAO) theory of contact [6, 7] is derived here. The 
results are extended to metal contacts involving an 
interfacial fluid. A simplified thermal model issued 
from the works of Degiovanni et al. [8, 9] is herein 
used and confronted the experimental results with a 
quite satisfying agreement. 

As shown in Fig. 1. the thermal contact problem 
may be decomposed in two relatively independant  
steps : 

Step 1--as TCR is strongly dependent on interfacial 
geometrical state, a mechanical model must be used to 
describe surface deformations under the applied load. 
Sexl et al. [10], Hisakado [11], Hsieh and Touloukian 
[12], Yovanovich [13] and DeVaal et al. [14] have pro- 
vided models based on various hypotheses for asperity 
shape (conical, hemispherical, prismatic.. .) ,  asperity 
distribution and mechanical deformations (elastic, plas- 
tic, elastic and plastic). As mentioned in Refs. [5, 15], if 
plastic deformations occur during the first load cycle 
(initial crushing of the peaks) leading to non-repro- 
ducible curves, then the contact behavior tends to be 
fully elastic and justify the choice of a full elastic model. 

Step 2-- the  prediction of TC R  from the actual state 
of the interface necessitates a geometrical schem- 
atization. Previous studies [16-25] used a rep- 
resentative flux tube called Holm tube which syn- 
thesizes the heat transfer across a single medium 
contact spot (Fig. 2). Analytical solution has been 
determined by Sanokawa [26], for the general case of 
three different mediums. Unfortunately,  the math- 
ematical procedure is heavy and leads to results 
difficult to put into practice. 
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NOMENCLATURE 

a contact radius n 
Ao real area of contact n* 
An apparent area of contact 
b Holm tube radius N 
b/ radius of the heat flow tube across P 

contact spot P r  

C* non-dimensional curvature of Red 
asperities Rci 

d* non-dimensional separation of the two Rtc 
contacting surfaces 

dA, Holm tube section area AT 
D, lineic density of asperities z* 
Ds surfacic density of asperities W 
e mean interfacial gap 
e ° effective interfacial gap (case of gases) 
e* non-dimensional mean interfacial gap ~b 
E equivalent Young's modulus r/ 
Ei Young's modulus of solid i v 
gi accommodation distance of the gas p 

molecules with the face of solid i tri 
k thermal conductivity 
l auto correlation length z~ 
M total number of asperities 42 

number of contact spots per unit area 
non-dimensional number of contact 
spots per unit area 
total number of contact spots 
mean contact pressure 
Prandtl number 
direct contact resistance 
interstital resistance 
thermal contact resistance based on 
heat flow 
temperature difference across interface 
non-dimensional height of peaks 
contact load. 

Greek symbols 
heat flow 
thermal contact factor 
Poisson's ratio of solid i 
thermal parameter 
root mean square roughness of 
surface i 
autocorrelation distance of surface i 
surfacic contact factor. 

Surf cetopography 
Load i 
Apparent area of contact 

Mechanical model 
of deformation 

Geometrical 
interfacial state 

Fig. 1. TCR modeling steps. 

J ®'ITcR ] 
Thermal 
model 

We refer here to the simplified thermal model pro- 
posed by Degiovanni et  al. [8, 9]. In this model, the 
heat is assumed to transit by two different, but coupled 
paths (contact spot and interstitial fluid). TCR can be 
decomposed into two components : the direct contact 
resistance Roa which depends on the effect of con- 
stricting of flux lines and striction of heat flux toward 
the contact spot and on the height of asperities ; the 

b : 

Contact plane 

Contact spot 

Fig. 2. Holm tube model. 

interstitial contact resistance R~ which represents the 
influence of the interstitial medium. 

In step 1, the value of the geometrical parameters 
a, b, e (see Fig. 2) can be deduced from the initial 
surface state, the mechanical properties of solids and 
the contact load. In step 2, TCR is calculated as a 
function of a, b, e and of the solids and interstitial 
material thermal properties. 

STEP I~DEFORMATION MODEL 

A survey of the literature has revealed a number of 
analyses which characterize the topography of solid 
interfaces (number and average size of the micro- 
contact). This paper is devoted to random, isotropic, 
Gaussian surfaces. 

All these analyses generally embody three main sub- 
steps : 

• characterization of the sum surface ; 
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• sum surface height and curvature peak dis- 
tribution ; 

• deformation mode of the asperities in contact. 

The first substep of the model is based on the prem- 
ise that the contact of two nominally plane real sur- 
faces is, in general, equivalent to the contact of their 
sum against a smooth plane. The so-called sum profile 
is in general available because of the small slope of real 
surfaces. For  clarity, the profiles are always greatly 
exaggerated in the w;rtical direction. 

Afterwards, we consider the sum surface and we 
describe the height distribution and peak shape. The 
earlier theories assuLmed that surfaces consisted of 
cones [27], pyramids or spherical caps [6, 27-29]. 

Thus, for example, Greenwood and Williamson [28] 
assume that the surface can be modeled by identical 
spherical asperities. The description also needs three 
parameters : R mean radius at the top of the asperities, 
as root mean square of the summit height, Ds density 
of the summit per unit area. 

The evaluation of these three parameters and their 
sensibility with the :sampling interval have been dis- 
cussed by MacCoo11130]. We prefer to choose a model 
which enables us to distribute the curvature of 
asperities. 

Nayak [29] has proposed that a rough surface has 
to be considered as a Gaussian random process. Using 
the work of the oceanographer Longnet-Higgins on 
the whole, Nayak has given various geometrical 
properties of  the asperities from the power spectral 
density of the surface and its zeroth, second and fourth 
moments. 

Whitehouse and Archard [6], working on surfaces 
with an exponential correlation function, used a three 
point analysis and :showed that height and asperity 
curvatures can be predicted using two parameters : a 
(root mean square of the profile) and z (factor gov- 
erning the swiftness of decay of the correlation func- 
tion). 

We selected, for two reasons, the Whitehouse and 
Archard theory: fir:~t, this theory proved to be very 
accurate for the prediction of joint stiffness [31, 32]; 
second, commercial equipment is already available for 
measuring the two parameters required by this theory. 

The final substep consists in taking into account the 
microcontact's defo:rmation mode. Depending on the 
conditions (loading, roughness, mechanical charac- 
teristics), in a given contact, we can have an entire 
deformation range from Hertz elastic to fully plastic. 
In fact, the major models are purely elastic [6, 28, 29] 
or purely plastic [27, 33]. 

Numerous authors have shown that the micro- 
geometries of surfaces are not significantly altered by 
the successive loadings [31], The plastic deformations 
must occur only on ..singularities of the profile without 
any influence on statistical parameters, such as tr or z. 
So, the choice of an elastic model of deformation 
seems to be fully justified. Previous studies have tried 
to determine the validity domain of such a model. 

They have shown that the principal mode of asperity 
deformation can be predicted using the so-called plas- 
ticity indices [7, 28]. According to one criterion, when 
the plasticity index is less than 0.6, the probability of 
plastic flow at the contact is very small [7]. We chose 
an elastic model of deformation because a large num- 
ber of engineering surfaces satisfy this condition. 

Hence, from the knowledge of the two charac- 
teristics tr~ and zi of each surface S~, the apparent 
contact load W and the apparent contact area An, it 
is possible to compute (see Appendix I) the three 
geometrical parameters a, b, e which define the actual 
dimensions of the Holm tube. The mean heights el 
and e 2 of the two asperities in contact can be deduced 
from e and from mechanical considerations (see 
Appendix II). 

STEP 2nTCR MODEL 

The TCR is usually defined as the ratio of the tem- 
perature drop across the interface to the heat flow 
across the interface : 

Rio = - ~  [K W- ' ] .  (1) 

Note that the temperature drop AT cannot be 
directly measured but is generally extrapolated from 
temperatures measured outside the perturbed zone. 
The TCR may also be defined [4, 15] as the difference 
between the real resistance RAn between A and B (two 
isothermal surfaces located far from the perturbed 
zone) and R°B, the resistance existing between the 
same two surfaces if the contact were perfect : 

R t  c o = R A B - -  R~B. (2) 

Starting from the Holm tube model (single asperity 
bridge of radius a and cylindrical heat flow tube of 
radius b--see Fig. 2) and assuming that the heat flow 
across the contact can be separated into two flows 
acting in paral lel--~i  (across the interstitial fluid) and 
• ~ (across the contact spot) (see Fig. 3)-- i t  can be 
shown [8, 9], by using definition (2), that Rt~ can be 
expressed as : 

1 1 1 

Rt~ - Red + Rci" 

Red is the direct contact resistance associated to the 
heat flow ~¢ across the contact spot and R~i is the 
interstitial contact resistance associated to the heat 
flOW (I) i across the interstitial medium. 

In the previous model [8, 9], this relation is derived 
from an analytic solution obtained for a simplified 
Holm tube in which the thermal effect of interstitial 
space and asperities is taken into account through 
continuity relations, which supposed heat flux uni- 
formity on the contact spot and on the interstitial 
surface. 

All these resistances are reported to the unity of 
area and expressed in mZKW-1. 
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Fig. 3. Heat flow decomposition. 

Direct contact resistance model  

The direct contact resistance Red is expressed as the 
sum of the constriction resistance Rcc and the asperit- 
ies contact resistance R~a. These two resistances are 
calculated using the two following expressions : 

1 I-el ~e21 
Rca = ~ L ~ I  1 "~ (3) 

with e~, e2 respective heights of the two contact discs 
(see Appendix I I ) ;  k~, k2 thermal conductivities of 
the two solids in contact ; ~ = a/b, ~2 surfacic contact 
factor. 

7~b 2 
R~ = ~ a  (1 .08 -  1.40~) (4) 

where k is the harmonic mean of the thermal con- 
ductivities of the two contacting solids, i.e. 

2 1 1 

The exact value of R~c is obtained by the sum of 
infinite series of Bessel functions and the simplified 
relation (4), is calculated using Hooke and Jeeves 
minimization method. This relation provides an 
approximation of the series, with an error less than 
1%, while ~ remains inferior to 0.2 (that is the case in 
the main of the current metal contacts). It must be 
noted that the same approximation has been estab- 
lished by numerous authors using various methods 
[15-25]. For  example, Cooper et al. [21] give for 
~ < 0 . 5 :  

7tb 2 
~o = ~ ( I - 1 . 4 1 0 .  

For  all the cases we encountered, the influence of 
R~a is negligible and it is possible to assimilate R~d to 
Nee. 

Degiovanni et al. [9] have determined the contact 
spot shape influence on the value of R~. This influence 
is negligible between circle and square. For  more leng- 
thened contacts, the relation (4) must be modified. 

Intersti t ial  resistance model  
In the referred model, Rci is expressed by the 

relation : 

e 

gci = k-~ (5) 

with e interfacial gap ; kl thermal conductivity of inter- 
stitial medium. 

As the mean interfacial gap e between the contact 
surfaces is small (<0.1 mm), the Grashof  number  
remains below 2000 and the heat transfer across the 
fluid can be considered to occur only by conduction. 
Radiat ion effects are very weak and can be neglected 
except for high temperatures (>900  K [3]) or for a 
vacuum interstitial space. For  current situations, most 
authors allege the conductive transfer to be one- 
dimensional and express the interstitial resistance by 
the same relation (5) [3, 4, 20]. 

If the interstitial fluid is a gas, e being generally 
close to the molecular mean free path, the thermal 
conductivity is affected by the accommodation effect. 
An equivalent effective gap e ° can be defined as : 

e ° = e + g l  +g2 

where gi is the accommodation distance of the gas 
molecules with the face Si of solid i. Its value can be 
deduced from the kinetic theory of gases [4, 13, 20, 
34]: 

7 2 - ~  L 
gi = 1 . 9 8 -  

7 + 1 ~ Pr  

with ~ = Cp/Cv,  specific heat ratio of the gas; Pr 
Prandtl  number ;  ~ molecular accommodation 
coefficient on the face S~; L molecular mean free path 
at the considered pressure. If necessary, the relation 
(5) can be modified by substituting e ° to e. 

Then, knowing the values of ~, e, ej, e2 and b it is 
possible to calculate Rcd, Rc~ and the consecutive value 
of Rtc. Hence, as ¢, el, e2, e, b depend on the applied 
load, we obtain a load-dependant model for TCR. 

VALIDATION 

With the aim of checking the validity of  our model, 
a comparison between theoretical predictions and 
some literature experimental data has been carried 
out. The main difficulty comes from the impossibility 
of finding, in the former papers, the value of z (auto- 
correlation distance) which is necessary for our model. 
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MacWaid [5] AIu-AFI/AF 2 
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Fig. 4. MacWaid and Marschall [5] AI/A1 in vacuum. 
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Fig. 6. Weills and Ryder [33] A1/A1 in oil. 
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Most of the authors; provide only the values of o (rms 
roughness) of each surface. However, possible values 
of z can be extrapolated from profile parameters or 
machining indications as it has been done for two 
couples of metalic surfaces studied in Refs. [5] and 
[35]. 

In Ref. [5], MacWaid and MarschaU showed the 
results ofmeasurernents for four pairs of metallic con- 
tacts (stainless steel or aluminum) in a vacuum 
environment. Surfaces were bead blasted or ground. 
We deduced the value of z from the second spectral 
moment using the relation : 

5a 
T =  

6.9x/~2" 

Figure 4 concerns bead blasted aluminum surfaces 
(AFdAF2) for which the spectral moments of the sum 
surface are m0 = 6.81 gm 2 (that gives a = 2.44 pm) 
and m2 = 0.0522 (that gives z = 7.73 pm). 

Figure 5 shows tile results for bead blasted stainless 
steel surfaces (SF~/SF2) with m0 = 0.765 #m 2 (that 
gives a = 0.802 pin) and m2 = 0.00933 (that gives 
z = 6.02 pm). 

As shown, there is a good agreement for aluminum 
specimens, but a larger difference at low loads for 
stainless steel specimens. For ground specimens we 
got a larger discrepancy. 

In Ref. [4], Bardon showed the results of measure- 
ments for a contact polished steel and turned brass 
specimen. Three kinds of environment (vacuum, air, 

helium) are studied. Unfortunately, the measurements 
of TCR are done for the first load cycle, where plastic 
deformations dominate, so that they don't  correspond 
to the hypothesis of our model. 

In [35], Weills and Ryder compared, for a pair 
of aluminum specimens, the influence of interstitial 
material (air and oil). We deduced possible values 
of z using the following empirical relations : smooth 
surfaces ~ = 140 a ; rough surfaces ~ = 20 a. The com- 
parison between our predictions and measurements is 
shown on Figs 6 and 7. There is, again, a good agree- 
ment for high loads, but a larger difference for the 
lowers. This discrepancy between experimental and 
theoretical data for the low loads, can be explained 
by the wide scattering of experimental data on the 
curves presented by Weills and Ryder. It is difficult to 
know if the data corresponds to a first loading or a 
cycled one. The incidence of the initial crushing of the 
peaks on TCR must be preponderant for low loads. 

So, taking into account all these uncertainties, the 
model presented herein seems to be relatively accurate. 
However, due to the limited number of literature data 
available for checking our model, we have to perform 
an experimental validation in which the surface par- 
ameters a and z will be accurately measured. We are 
already running that experimental procedure. The 
results will allow us to confirm the validity of the 
model. 

CONCLUSIONS 

The main advantage of the previous model lies in 
the fact that it is easy to implement. The deformation 
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Geometrical parameters: I 
An: apparent area of contact 
cri: root mean square roughness of surface i t" 
q'i; auto-correlation distance of surface i [ 

L Mechanical parameters: 
W: apparent load 
Ei: Young's modulus of solid i 
vi: Poisson's ratio of solid i 

Thermal parameters: 
ki: thermal conductivity of solid i 
k: thermal conductivity of interstitial medium 
gi: accommodation distance with the face of solid i 

(case of gas) 

1 
Interface parameters: 
S*, ~, n*, e* 

Fig. 8. TCR calculation procedure. 

Thermal model of 
elementary cell 

1 

calculat ions being non-dimensional ,  they are done  
once and  for all and  the var ia t ions  of  the four integrals 
defined in Appendix  II  can be stored in a boa rd  (like 
Excel). The same software is able to provide,  for every 
type of  contac t  and  intersti t ial  medium,  the var ia t ion  
curve of  T C R  as a funct ion of  the appa ren t  pressure. 
Figure 8 summarizes  the input  parameters  and  the 
main  steps of  the calculation.  

Thus,  if the later val idat ions confirm these first 
results, the proposed procedure  will be a powerful  tool  
in thermal  contac t  resistance modeling.  
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2. Repartition o f  the asperities on the sum surface 
At a starting point of  the WAO theory [6, 7], we assume 

that the profile has been sampled as a sequence of inde- 
pendant  events. This condition is reached if the points are 
separated by lengths, 1 I> 2, 3~. (For I >t 2.3z, the normalized 
autocorrelation function g*(/) ~< 0.1 and the points are con- 
sidered as uncorrelated.) 

The three-point analysis of the surface profile permits to 
predict the probabifity density for a point of the sum profile 
to be a peak at height z and curvature C 

f*(z* ,  C*) 

1 ~ - - )  e x p ( - ( z * - C * ' ~ 2 " ~  / C * \  
21.lx/~ exp( - -  z*2 ~ - )  ) erf~-~-). 

The height z and the curvature C are normalized with the 
relations : 

z* z and C* Cl2 
O" (7 

According to the work of Nayak [24], we use the relation 
between D~ (surfacic density of asperities) and D] (lineic 
density of asperities) : 

1 
D~ = 1.2D~ with D 1 = 3l"  

APPENDIX ImRESULTS CONCERNING SURFACE 
DEFORMATIONS 

1. Characteristics o f  the sum surface 

1 .a. Characteristic normal to the contactplane. When both  
surfaces are Gaussian, the sum surface is also Gaussian. The 

2 2 root mean square of the sum surface is cr = ~ where 
cq, a2 are the root me, an square of each surface. 

The probalibity density for height of profile is then given 
by: 

==  ' exp(-l(zy  
. , / 211  \ i k g J  

j. 

The mean line through the profile will be taken as z - 0. 
~r is the first parameter which characterizes the sum surface 
normal to the contact plane. 

1.b. Characteristic in the contact plane. The auto- 
correlation function of the surface in a direction x is defined 
a s  

1 ('L/2 
y(t) == ~ J-L/2 Z(X)Z(X + t) dx. 

Random and isotropic surfaces give, in all direction, an 
autocorrelation function of the form : 

g(t) = or2 e x p ( -  ~). 

z is a parameter (auto-correlation distance) governing the 
swiftness of decay of the correlation• We can use, for an 
initial approximation, the proportionality between z and Sm 
(average distance between positive crossings of profile with 
the mean line). 

T can be deduced from zt and z2 (constants of the two 
surfaces) using the relation : 

1 
= ~(~l +~2). 

z is the second parameter which characterises the sum surface 
in the contact p l ane  

So we have : 

1 
O s 

7 . 5 1 2  

If  A, is the apparent  surface of the contact, the number  of 
asperities with a summit between z~ and z2 and curvature 
between C~ and C2 is : 

~, c~ 
3A,D, f ~ f (z*,  C*) dC* dz*. 

d ~'~ ,J c ? 

3. Deformation mode o f  the asperities 
In the previous model, the contact is represented by two 

surfaces, one of which is flat and infinitely stiff while the 
other is rough and elastic (Fig. Al l .  

To take into account the elasticity of the two initial 
surfaces, the sum surface has an equivalent module of elas- 
ticity E defined by : 

1 1 -v~ 1 - v ~  

7:= el + e~--  

where vl, v2 are Poisson's ratios and El, E2 Young's  modulus 
of the two materials in contact. 

Given a summit in contact because its height z exceeds d 
(separation between the two contacting planes--see Fig. A2), 
the summit must  deflect by the amount  z -  d. 

In that  case, the Hertz solution for hemispherical contact 
gives : 

The contact area l ' I ( z -d )  
C 

The normal load 
4 E ( z - d )  3/2 

3.C1/2 

By integrating these functions and considering the prob- 
ability density over the space of possible values of the vari- 
ables, it is now possible to calculate the following values for 
the full surface. 
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Unloaded Loaded 

Fig. A 1. Variation of asperities mean height. 

d* 

Z* 

I X 

Fig. A2. Sum surface contact model. 

3.a. Real contact area A c between the surfaces, surfacic 
contact factor 42. 

Ac = 3rllZM (z*-  d* 

with l sampling length; M total number of asperities, 
M = An.Ds; Ds surfacic density of asperities; A, apparent 
area of contact; d* = d/a non-dimensional separation of the 
two contacting surfaces ; d separation of the summit mean 
planes. 

Using the relation D = 1/7,5.l 2, we can now obtain the 
value of the surfacic contact factor 42 by the relation : 

f0 * Z* * 
~: Ac 3.FI~ ~ f ( C ) d C .  dz." 

= A~ = 7,5 Jd* (z* -- d*) ~2, 

(A1) 
provides the value of the mean contact radius a of the 

Holm tube by the relation : 

a = lb. 

3.b. Real applied load W, apparent pressure P, non-dimen- 
sional pressure S*. 

(~ f(z*, C*) dC* dz* W = 4DsEIaAr. ff(z*-d*) Jo 
Then, the apparent pressure is given by : 

P = W = 4 D , E l e I  (z*-d*) 3/2 f ) dC* dz* 
n J d *  

and as we have D~ = 1/7,5l z and l = 2.3z, we can write : 

f~. ('~ (tz* C'1 S* = EaaPz = 0.2319 , (z*-d*)3/:J0 ~ ' ~ C ~  "dC*dz*, 

(A2) 

S* is a non-dimensional number which synthesizes the 
geometrical and mechanical state of the two contact surfaces. 
The previous relation establishes a correspondence between 
the non-dimensional load S* and the non-dimensional sep- 
aration d*. 

3.c. Mean interfacial 9ap (e and e*). By referring to Fig. 
A l, we can now determine the mean interfacial gap e by the 
relation : 

fdlp(z*).z*dz* 

e* = d* with e = e*a. (A3) 

fd~p(z*)dz* 

3.d. Number of contact spots by unit area (n and n*). The 
total number N of peaks in contact with the apparent area 
A. is given by : 

N = M. f*(z*, C*) dz* dC* 
* oc 

and as M = A," Ds/Ds = 1/7,5l 2 and l = 2.3z, we have : 

i;f N z2 1 f*(z*, C*) dz* dC*. 
n* = ~ .  7.5-(2.3) 2 . ~ 

(A4) 

n* is the non-dimensional number of contact spots by unit 
area. The real number n of contact spots by unit area is 
n = n*/'c 2 and we can deduce the Holm tube section dAt = FI 
b 2 by the relation : 

1 z 2 
d A t = n = ~  that i s b =  n,/~ 

Through the non-dimensional parameter ~, e* and n*, the 
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relations (A1)-(A4) allow us to calculate the actual values 
of  the geometrical dimensions a, b, e defining the Holm tube 
shape as a function of  the apparent load W and of  the 
apparent area of conlact A,. 

eq +e~ = e. 

Using relations (A5) and (A7) we can deduce: 

E2ele+(El-E2)ele~ 
e~ - 

E~e2+E2el 

(A7) 

APPENDIX II~-CALCULATION OF THE 
ASPEFIITIES MEAN HEIGHT 

Elasticity in solid 1 and solid 2 (see Fig. A1) gives : 

C = E1 e l - e ~  = E2 e 2 -  e____~ (A5) 
el e2 

where C is the mean pression at the surface of  the asperities. 
For  the sum surface, without any load, we have : 

el q-e2 = 4x/~t2 +a~ = 40- (A6) 

and when load is applied : 

E1 e2e + (E2 - El)el e2 
e~ = (A8) 

Ele2 + E2el 
Assuming effe 2 = al/a 2 and using relation (A6), it is easy 

to show that : 

4a~ a 4a2 a 
el = and e2 = 

0.1 +0"2 o'l +o'2 " 

Substituting el and e2 in relations (A8), we can obtain the 
following values of  e'l and e~. 

1 [ 4~r,a2a ] 
e'l E~ale+ - -  (El -E2)  . 

Eta2 + E20.1 0.t +0"2 

e'l 1 [e,a2e+ 4a.0.20. (E2 --E1)].  
El0.2 + E20.1 k 0.1 "}-0"2 


